
LNKnet: Neural Network,
Machine-Learning, and Statistical
Software for Pattern Classification
Richard P. Lippmann, Linda Kukolich, and Elliot Singer

• Pattern~dassification and clustering algorithms are key components of
modern information processing systems used to perform tasks such as speech
and image recognition, printed~character recognition, medical diagnosis, fault
detection, process control, and financial decision making. To simplifY the task
of applying these types of algorithms in new application areas, we have
developed LNKnet-a software package that provides access toinore than 20
pattern~classification, clustering, and feature~selection algorithms. Included are
the most important algorithms from the fields of neural networks, statistics,
machine learning, and artificial intelligence. The algorithms can be trained and
tested on separate data or tested with automatic cross~validation. LNKnet runs
under the UNIX operating system and access to the different algorithms is
provided through a graphical point~and~click user interface. Graphical outputs
include two~dimensional (2~D) scatter and decision~region plots and 1-D plots
of data histograms, classifier outputs, and error rates during training.
Parameters of trained classifiers are stored in files from which the parameters
can be translated into source-code subroutines (written in the C programming
language) that can then be embedded in a user application program. Lincoln
Laboratory and other research laboratories have used LNKnet successfully for
many diverse applications.

P ATTERN~CLASSIFICATION ALGORITHMS are diffi­
cult to implement in a manner that simplifies
the task of training, evaluating, and applying

them correctly to new problems. At Lincoln Labora~
tory and other sites, researchers were spending an
excessive amount of programming time to implement
and debug the same classification algorithms and to
create complex command scripts to run experiments.
Classifiers were often implemented by different pro­
grammers using idiosyncratic programming conven~
tions, user interfaces, and data interfaces. This lack
of standardization made it difficult to compare classi­
fiers and to embed them in user application pro­
grams. Consequently, to prevent this duplicate
programming and to simplifY the task of applying

classification algorithms, we developed LNKnet-a
software package that provides access to more than 20
pattern~dassification, clustering, and feature-selection
algorithms. Included are the most important algo­
rithms from the fields of neural networks, statistics,
machine learning, and artificial intelligence. Access to
the different algorithms is provided through a point­
and-click user interface, and graphical outputs in­
clude nvo~dimensional (2-D) scatter and decision~
region plots and 1-D plots of data histograms, classifier
outputs, and error rates during training. (Note: The
acronym LNK stands for the initials of the last names
of the software's three principal programmers-Rich­
ard Lippmann, Dave Nation, and Linda Kukolich).

This article first presents an introduction to pat~ ·

VOLUM E 6, NUMBER 2, 1993 THE liNCO LN LABOR ATORY JOU RNAL 249

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1993 2. REPORT TYPE

3. DATES COVERED
 00-00-1993 to 00-00-1993

4. TITLE AND SUBTITLE
LNKnet: Neural Network, Machine-Learning, and Statistical Software
for Pattern Classification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Lincoln Laboratory,244 Wood
Street,Lexington,MA,02420

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

Input data

[QJ
Feature

I~ I Raw inputs extraction Features Decision
Classifier

and

I AGE 23 I selection

WEIGHT 127

I YEsM NoDI
FIGURE 1. A simple pattern-classification system with image, waveform, categorical, and binary inputs.

tern classification and then describes the LNK.net
software package. The description includes a simple
pattern-classification experiment that demonstrates
how LNK.net is applied to new databases. Next, this
article describes three LNK.net applications. In the
first application, LNK.net radial-basis-function sub­
routines are used in a hybrid neural-network/hidden­
Markov-model isolated-word recognizer. The second
application is an approach to secondary testing for
wordspotting in which LNK.net multilayer perceptron
classifiers are accessed through the system's point­
and-click interface. In the final application, LNK.net
is used to develop a system that learns in real time the
strategy a human uses to play an on-line computer
game. This strategy-learning system was developed
with the LNK.net point-and-click interface and then
implemented for real-time performance with the
LNK.net multilayer perceptron subroutines.

Introduction to Pattern Classification

T he purpose of a pattern classifier is to assign every
input pattern to one of a small number of discrete
classes, or groups. For example, if the input to a
classifier is the enlarged image of cells from a Pap
smear, the output classes could label the cells as nor­
mal or cancerous. Figure 1 shows a block diagram of a
simple pattern-classification system. Inputs from sen­
sors or processed information from computer data­
bases are fed into a preprocessor that extracts mea­
surements or features. The features simplify the
classification task: irrelevant information is eliminated

250 THE LINCOLN LABORATORY JOURNAL VOLUME 6, NUMBER 2, 1993

by focusing only on those properties of the raw inputs
which are distinguishable between classes. The input
feature measurements x 1, x2, x3, ... , xD form a
feature vector X with D elements in each vector. The
feature vectors, or patterns, are fed into a classifier
that assigns each vector to one of M prespecified
classes denoted Ci. Given a feature vector, a typical
classifier creates one discriminant fonction, or output
Yi• per class. The decision rule that most classifiers use
is to assign the feature vector to the class correspond­
ing to the discriminant function, or output, with the
highest value. All classifiers separate the space spanned
by the input variables into decision regions, which
correspond to regions where the classification deci­
sion remains constant as the input features change.

The three major approaches to developing pattern
classifiers are the probability-density-function (PDF),
posterior-probability, and boundary-forming strategies.
These approaches differ in the statistical quantity that
their outputs model and in the procedures they use
for classifier training: PDF classifiers estimate class
likelihoods or probability density functions, poste­
rior-probability classifiers estimate Bayesian a poste­
riori probabilities [1] (hereafter referred to as poste­
rior probabilities), and boundary-forming classifiers
form decision regions. Figure 2 illustrates the shape of
these functions for a simple problem with one input
feature, two classes denoted A and B, and Gaussian
class distributions. T he PDF functions formed by
statistical classifiers are Gaussian shaped, as shown in
Figure 2(a) . T hese functions represent the distribu-

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

tions of the input feature for the two classes. Posterior
probabilities formed by many neural network classifi­
ers have sigmoidal shapes, as shown in Figure 2(b).
These functions vary from 0 to 1, their sum equals 1,
and they represent the probability of each class, given
a specific input value. Finally, the binary indicator
outputs of boundary-forming classifiers separate the
input into two regions, one for class A and the other
for class B, as shown in Figure 2(c).

A Taxonomy of Pattern Classifiers

Table 1 contains a taxonomy of the most common
PDF, posterior-probability, and boundary-forming
classifiers. The first three types of classifiers in this
table produce continuous probabilistic outputs, while
the last two produce binary indicator outputs.

The first row in Table 1 represents conventional
PDF classifiers [2, 3], which model distributions of
pattern classes separately through the use of paramet­
ric functions. In the decision-region diagram, the green
and blue dots represent the means of classes A and B,
respectively, the circles denote the respective standard
deviations for the two classes, and the black line
represents the boundary between decision regions for
the two classes.

The next two rows in Table 1 contain two types of
neural network posterior-probability classifiers. Glo­
bal neural network classifiers [4- 6] form output dis­
criminant functions from internal computing elements
or nodes that use sigmoid or polynomial functions
having high nonzero outputs over a large region of

p(X I A) p(X I B) p(A I X)

(a) (b)

the input space. In the decision-region diagram, the
three black lines represent half-plane decision-region
boundaries formed by sigmoid nodes. Global neural
network classifiers include multilayer perceptrons
(MLP) trained with back propagation, Boltzmann
machines, and high-order polynomial networks. Lo­
cal neural network classifiers [7] form output dis­
criminant functions from internal computing elements
that use Gaussian or other radially symmetric func­
tions having high nonzero outputs over only a local­
ized region of the input space. In the decision-region
diagram, the yellow cells represent individual com­
puting elements and the two black curves represent
decision-region boundaries. Local neural network clas­
sifiers include radial basis function (RBF) and kernel
discriminant classifiers. These two types of classifiers
make no strong assumptions concerning underlying
distributions, they both form complex decision re­
gions with only one or two hidden layers, and they
both are typically trained to minimize the mean
squared error between the desired and actual network

outputs.
The bottom two rows of Table 1 contain bound­

ary-forming classifiers. N earest neighbor classifiers
[2, 7] perform classification based on the distance
between a new unknown input and previously stored
exemplars. In the decision-region diagram, the blue
crosses and green diamonds represent training pat­
terns from two different classes, and the two black
jagged lines represent the boundaries between those
two classes. Nearest neighbor classifiers, which in-

p(B I X) A B

(c)

FIGURE 2. Discriminant functions formed by (a) probability-density-function (PDF), (b) posterior-probability, and (c)

boundary-forming classifiers for a problem with one input feature and two classes A and B. Note that PDF classifiers
estimate likelihoods, posterior-probability classifiers estimate posterior probabilities, and boundary-forming classifiers
create decision regions.

VOLUME 6. NUMBER 2. 1993 THE LINCOLN LABORATORY JOURNAL 251

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

Table 1. A Pattern-Classification Taxonomy

Type of Classifier
Decision Region Computing Representative
(shaded in red) Element Classifiers

Cf) Distribution Gaussian,
PDF dependent Gaussian

mixture

~~
Sigmoid Multilayer perceptron,

Global __r high-order
polynomial network

' Kernel Rad ial basis
Local

--......... ·

A function , kernel . ·-·--r-
i discriminant

~ Euclidean norm K-nearest neighbor,
Nearest • • • • • ~ I/

learning vector
Neighbor
~ quantizer

Rule
I Threshold logic Binary decision

n I
tree,

Forming hypersphere

Note: For a description of the five different types of classifiers listed, see the main text.

elude conventional K-nearest neighbor (KNN) classi­
fiers and neural network learning vector quantizer
(LVQ) classifiers, train extremely rapidly but they can
require considerable computation time on a serial
processor as well as large amounts of memory. Rule­
forming classifiers [2, 7- 11] use threshold-logic nodes
or rules to partition the input space into labeled
regions. An input can then be classified by the label of
the region where the input is located. In the decision­
region diagram for rule-forming classifiers in Table 1,
the black lines represent the decision-region bound­
aries formed by threshold-logic nodes or rules. Rule­
forming classifiers have binary outputs and include
binary decision trees, the hypersphere classifier,
perceptrons with hard-limiting nonlinearities trained
with the perceptron convergence procedure, sigmoidal
or RBF networks trained with differential training,
and many machine-learning approaches that result in
a small set of classification rules.

No one type of classifier is suitable for all applica­
tions. PDF classifiers provide good performance when
the probability density functions of the input features

252 THE LINCOLN LABORATORY JOURNAL VOLUME 6, NUMBER 2, 1993

are known and when the training data are sufficient
to estimate the parameters of these density functions .
The most common PDF classifier is the Gaussian
classifier. The use of Gaussian density functions with
common class covariance matrices is called Linear
Discriminant Analysis (LDA) because the discrimi­
nant functions reduce to linear functions of the input
features. LDA provides good performance in many
simple problems in which the input features do have
Gaussian distributions. But, when the training data
are limited or when the real-world feature distribu­
tions are not accurately modeled by Gaussian distri­
butions, other approaches to classification provide
better performance.

Global and local neural network classifiers are both
suitable for applications in which probabilistic out­
puts are desired. Global neural network classifiers that
use sigmoid nodes are most suitable for applications
such as speech recognition and handwritten-character
recognition in which a large amount of training data
is available, and in which the training time can be
slow bur the speed of recognition during use must be

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neuml Network, Machine-Learning, and Statistical Software for Pattern Classification

fast. These classifiers are also well suited for imple­
mentation in parallel VLSI hardware that supports
the simple types of computation required by multi­
layer sigmoid networks. Local neural networks such
as RBF classifiers are most suitable when the input
features have similar scales and do not differ qualita­
tively and when shorter training times are desired at
the expense of slightly longer classification times.

Nearest neighbor classifiers are best suited for prob­
lems in which fast training and adaptation are essen­
tial but in which there is sufficient memory and enough
computational power to provide classification times
that are not too slow.

Finally, rule-based classifiers and decision trees are
most suitable when a minimal-sized classifier is de­
sired that can run extremely fast on a uniprocessor
computer and when simple explanations for classifier
decisions are desired.

Overview of LNKnet

LNKnet was developed to simplify the application of
the most important neural network, statistical, and
machine learning classifiers. We designed the software
so that it could be used at any one of the three levels
shown in Figure 3.

T he point-and-click graphical user interface can be
used to experiment rapidly and interactively with clas­
sifiers on new databases. This approach is the simplest
way to apply classification algorithms to new data­
bases. After converting a database into a simple ASCII
format, a user can run experiments by making the
appropriate selections in LNKnet windows with a
mouse and keyboard. A complex series of experi­
ments on a new moderate-sized database (containing
thousands of patterns) can be completed in less than
an hour. Use of the point-and-click interface does not
require any knowledge of UNIX shell scripts, C pro­
gramming, or the way in which LNKnet algorithms
are implemented.

Users who want to execute long batch jobs can edit
and run the shell scripts produced by the point-and­
click interface. This approach, which requires an un­
derstanding of shell scripts and the arguments to

LNKnet programs, simplifies the repetitive applica­
tion of the same algorithm to many data files and
automates the application of LNKnet when batch-

mode processing is desired.
Finally, users with knowledge of C programming

can work at the source-code level. At this level, C
source code that implements LNKnet subroutines
and libraries can be embedded in a user application
program. We have simplified this procedure with fil­
ter programs. The programs read in LNKnet param­
eter files defming trained classifiers and create C source­
code subroutines to implement those classifiers. These
C source-code subroutines can be embedded in a user

application program.
LNKnet contains more than 20 neural network,

pattern-classification, and feature-selection algorithms
(Table 2), each of which can be trained and then
tested on separate data or tested with automatic cross­
validation. The algorithms include classifiers that are
trained with labeled data under supervision, classifiers
that use clustering to initialize internal parameters
and then are trained with supervision, and clustering
algorithms that are trained with unlabeled data with­
out supervision. Algorithms for Canonical Linear Dis-

Point-and-click user interface

-·-

UNIX command-l ine programs

Subroutines written inC that can be
included in user application programs

RBF_PACK.C REPORTS.C

FIGURE 3. The three levels of using the LNKnet software
package. Researchers can access LNKnet either through
the point-and-click user interface, or by manually editing
shell scripts containing LNKnet commands to run batch
jobs, or by embedding LNKnet subroutines in application
programs.

VOLUME 6. NUMBER 2. 1993 THE LINCOLN LABORATORY JOURNAL 253

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: NeuraL Network, Machine-Learning, and StatisticaL Software for Pattern Classification

Table 2. LNKnet Algorithms

Neural
Network

Algorithms

Conventional
Pattern-Classification

Algorithms

Feature-Selection
Algorithms

Supervised
Training

Multilayer perceptron (MLP)

Adaptive step-size MLP

Cross-entropy MLP

Differential trained MLP

Hypersphere classifier

Gaussian linear discriminant

Quadratic Gaussian

K-nearest neighbor (KNN)

Condensed KNN

Binary decision tree

Canonical Linear Discriminant
Analysis (LOA)

KNN forward and backward
search

criminant Analysis and Principal Components Analy­
sis have been provided to reduce the number of input
features through the use of new features that are linear
combinations of old features. KNN forward and back­
ward searches have been included to select a small
number of features from among the existing features.
Descriptions and comparisons of these algorithms are
available in References 2, 6, 9, and 12 through 21.

All LNKnet software is written in C and runs
under the UNIX operating system. The graphical
user interface runs under MIT X or Sun Microsystem's
Open Windows. (Note: Reference 14 includes a com­
prehensive description of this user interface.) Graphi­
cal outputs include 2-D scatter and decision-region
plots and overlaid internaLs plots that illustrate how
decision regions were formed. Also available are 1-D
histogram plots, 1-D plots of classifier outputs, and
plots showing how the error rate and cost function
change during training. Standard printouts include
confosion matrices, summary statistics of the errors for
each class, and estimates of the binomial standard

254 TH E LINCOLN LABORATORY JOURNAL VOLUME 6. NUMBER 2. 1993

Combined Unsupervised­
Supervised Training

Radial basis function (RBF)

Incremental RBF (IRBF)

DifferentiaiiRBF

Learning vector quantizer (L VQ)

Nearest-cluster classifier

Gaussian-mixture classifier

Diagonal/full covariance

Tied/per-class centers

deviations of error rates.

Unsupervised Training
(Clustering)

Leader clustering

K-means clustering

Estimate-Maximize
(EM) clustering

Principal Components
Analysis (PCA)

LNKnet allows the training and testing of large
classifiers with numerous input features and training
patterns. Indeed, we have trained and tested classifiers
having up to 10,000 parameters, or weights, and we
have trained classifiers with more than 1000 input
features and more than 100,000 training patterns.
During training and testing, all control screens are
saved automatically so that they can be restored at a
later time if desired. This feature allows the continua­
tion and replication of complex experiments. Param­
eters of trained classifiers are stored in ftles and can be
used by code-generation ftlters to generate freestand­
ing classifier subroutines that can then be embedded
in user code.

Components of Pattern-Classification
Experiments

T he LNKnet graphical interface is designed to sim­
plify classification experiments. Figure 4 shows the
sequence of operations involved in the most common

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

classification experiment. At the beginning of each
experiment, a classification algorithm is selected, and
parameters that affect the structure or complexity of
the resulting classifier are also chosen. These param­
eters, which are sometimes called regularization pa­
rameters, include the number of nodes and layers for
MLP classifiers and trees, the training time and value
of weight decay for MLP classifiers, the number of
mixture components for Gaussian-mixture classifiers,
the type of covariance matrix used (full or diagonal,
grand average across or within classes) for Gaussian or
Gaussian-mixture classifiers, the value of Kfor KNN
classifiers, the number of centers for RBF classifiers,
and the number of principal component features used
as inputs to a classifier.

A database for a classification experiment typically
contains three separate sets of data: training data,
evaluation data, and test data. As shown in Figure 4,
training data are used initially to train the internal
weights or trainable parameters in a classifier. T he
error rate of the trained classifier is then evaluated
with the evaluation data. This procedure is necessary
because it is frequently possible to design a classifier
that provides a low error rate on training data but that
does not perform as well on other data sampled from
the same source. Repeated evaluations are followed by
retraining with different values for regularization pa­
rameters. The regularization parameters adjust the
complexity of the classifier, making the classifier only
as complex as necessary to obtain good classification
performance on unseen data. After all regularization

Simple
normalization ,
PCA, or LOA

Raw input
data

No
normalization

Change

~
classifier '
structure

Select
Train

classifier Test
and • ... with • ... with

classifier
training

evaluation
structure

data
data

l
Final

test with
test data

FIGURE 4. Components of a classification experiment.

parameters have been adjusted, the classifier generali­
zation error rate on unseen data is estimated with the
test data.

One of the most important features of LNKnet is
that it includes the ability to normalize input data
and to select a subset of input features for classifica­
tion (Figure 5). Normalization algorithms available in
LNKnet include simple normalization (each feature is
normalized separately to zero mean, unit variance),
Principal Components Analysis (PCA), and Linear
Discriminant Analysis (LDA) [2, 22]. Feature-selec­
tion algorithms include forward and backward searches
[22], which select features one at a time based on the
increase or decrease in the error rate measured with a

Select
features

Classifier
input

Use all
features

FIGURE 5. Feature selection and normalization available in LNKnet.

VOLUME 6. NUMBER 2, 1993 THE LINCOLN LABORATORY JOURNAL 255

Control

experiment

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

Select

algorithm

Select

_j Only store shell script do not run
EXPERIMENT
!13 Train Normal izat~io~n~:~:!]=-~S~i m=p l=e~(m=ea~n~-o~. v:ar:::ia:nc:e:_::-:,).--l ___ Select
_j Test on Training Data

train-test
Norm. File: vowel.norm.slmple, database

!13 Eva I
conditions

_j Test
Exper. Name: X ___ Number: _1 __ ~

_.1 Auto-increment experiment number

!13 Enable Plotting Plots .. . Restore Experoment Screens

Select _j N-fold Cross-Validation

plots l;utc<= dlt Follis: 2 __ .±:J
Fr(-t:'t fii.;. File E.'il:ens~ ·£

!13 Random presentation order
Random Seed: 0 ___ ~

_j Movie Mode
Epochs per Plo!: C_• _ ~

NOTE: Entries in text fields MUST be followed by <Return> or <Tab>

FIGURE 6. Main LNKnet window used in the vowel-classification experiment.

Number of :g MLP Parameters

passes
throug h ---- ~• of Epochs (cycles through all data): .:..1 0::..:0~--~

data ----- Nodes/Layer (input,hidden, . . • ,output): :2.~8:.1~0~==~"""'----======-!---
PARAMETERS: Weight update mode: Network
,......step size: _0.:..·;;2 __ _

Gradient- ,....... M t
I Update weights after each trial (no batch) topology:

Update weights after each epoch (all trials) l 2 in puts,
8 hidden

Variable weight update I
---~~~-----------~ nodes, and

descent / omen um: o.s

t
. Tolerance: .,.0:.:.:.0::..1:..._ __

S ep SIZe -
Decay: _ 0::._ __ _

Cost Function

I Squared Error

Cross Entropy

Maximum likelihood

Perceptron Convergence Procedure

Top Two Difference

Steepness: -'----

Batch size (first,maximum,epoch incr): 10 outputs
1,1,0

ALGORITHM OI'TIONS:

1-lultl~·ltl Ad~~·t St!)ll:: i:e t -lAS:

MAS incr (+): _,<..:.'-'.:..) 1:__ __

MAS deer('): _<.:.;'·:..:.! __ _

Output Node Function

I Standard Sigmoid

Symetric Sigmoid 1
linear I

FIGURE 7. "MLP Parameters" window used in the vowel-classification experiment.

256 THE LINCOLN LABORATORY JOURNAL VOLUME 6. NUMBER 2, 1993

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

nearest neighbor classifier and leave-one-out cross­
validation. A forward or backward search, a PCA, or
an LDA can be used to obtain a list of features or­
dered in terms of their presumed importance. From
this list, a subset of features can be selected for use in
the classification process. This subset can be the first
(and presumably most important) features or a selec­
tion of unordered features. A user can skip either the
normalization or feature-selection steps, thus allow­
ing the classifier to use any or all features of the raw
data or the normalized data, as shown in Figure 5.

A Vowel-Classification Experiment

The use of LNKnet to run experiments is best illus­
trated by an example. The experiment presented here
uses vowel data from a study performed by G.E.
Peterson and H.L. Barney [23], in which the first and
second vocal-tract resonance frequencies were mea­
sured from the spectra of 10 vowels produced by
7 6 men, women, and children saying the following
words: head, hid, hod, had, hawed, heard, heed, hud,
who'd, and hood. These two formant frequencies x1

and x2, which are known to be important for identify­
ing vowel sounds, were used as inputs to a classifier
with 10 classes consisting of the 10 vowels. Selecting
parameters on LNKnet windows and running the
vowel-classification experiments described in the fol­
lowing paragraphs took less than 3 min on a Sun
Spare 10 workstation.

Figure 6 shows the main LNKnet control window
that was used in our vowel-classification experiment.
To set up the experiment, we selected the vowel data­
base, chose the MLP classifier and its structure, checked
the "Train," "Eval," and "Enable Plotting" boxes in
the main window, and selected the desired types of
plots. The database, the algorithm parameters, and
the types of plots were selected with other windows
that appeared when the appropriate buttons were
selected in the main window. For example, the "Algo­
rithm Params . .. " button in the upper right of the
main window brought up the "MLP Parameters" win­
dow shown in Figure 7. The "MLP Parameters" win­
dow was used to select the network structure (2 in­
puts, 8 hidden nodes, and 10 outputs), the number of
times to pass through the entire training dataset dur­
ing training (100 passes, or epochs), the gradient-

descent step size used during training (0.2), the cost
function, and other parameters that control the train­
ing of MLP classifiers. (Note: For a description of
MLP classifiers, see Reference 6.)

LNKnet sets all of these parameters (as well as the
parameters in all of the other windows) automatically
to the most typical default values so that a user does
not have to set each of the parameters manually. A
user also has the capability to create new default
parameter settings by making the desired selections in
all windows, followed by selecting the "SAVE DE­
FAULTS" button in the upper left of the LNKnet
main window. Whenever an experiment is started,
the parameter settings for all LNKnet windows are
automatically stored in a file so that a user can read in
the parameter settings at a later time (e.g., to continue
a prior experiment after performing other experiments)
by selecting the "Restore Experiment Screens" button
in the main window.

Once all classifier parameters have been chosen, a
user begins an experiment by selecting the "START"
button in the main window. This step first creates a
UNIX shell script to run an experiment and then
runs the shell script in the background. The results of
the experiment are written in a file and printed to the
Open Windows window used to start LNKnet. After
each pass through the training data, LNKnet prints
the current classification error rate and the current
mean squared error.

When training is completed, a summary of the
training errors is printed, followed by the confusion
matrix and error summary for the evaluation data, as
shown in Tables 3 and 4. The confusion matrix con­
tains totals for the number of times the input pattern
was from class ci' 1 ~ i ~ M, and the number of times
the decision, or computed class, was from class S,
1 ~ j ~ M, over all patterns in the evaluation dataset.
(Note: For the ideal case in which LNKnet classifies
every input correctly, all of the off-diagonal entries in
the confusion matrix would be zero.) Summary statis­
tics contain the number of input patterns in each
class, the number of errors and the percent errors for
each class, the estimated binomial standard deviation
of the error estimate, the root-mean-square (rms) dif­
ference between the desired and the actual network
outputs for patterns in each class, and the label for

VO LU ME 6. NUMBER 2. 1993 THE LINCOLN LABORATORY JOURNAL 257

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: NeuraL Network, Machine-Learning, and StatisticaL Software for Pattern CLassification

Table 3. Classification Confusion Matrix for the Vowel-Classification Experiment

Computed Class
2 3 4 5 6 7 8 9 10 Total

Desired

Class

1 16 0 0 0 0 0 0 0 0 17

2 0 16 0 0 0 0 2 0 0 0 18

3 0 0 17 0 0 0 0 3 0 0 20

4 0 0 11 0 0 5 0 0 18

5 0 0 2 0 12 0 0 0 0 2 16

6 0 0 0 5 0 2 0 2 11

7 0 0 0 0 0 0 18 0 0 0 18

8 0 0 0 0 0 0 17 0 0 18

9 0 0 0 0 0 0 0 0 13 3 16

10 0 0 0 0 0 3 0 2 2 7 14

Total 18 18 19 11 13 9 20 29 15 14 166

Table4. Error Report for the Vowel-Classification Experiment

Binomial
Number Number Percent Standard rms

Class of Patterns of Errors Errors Deviation Errors Label

17 5.88 ±5.7 0.152 head

2 18 2 11.11 ±7.4 0.158 hid

3 20 3 15.00 ±8.0 0.159 hod

4 18 7 38.89 ± 11.5 0.219 had

5 16 4 25.00 ± 10.8 0.176 hawed

6 11 6 54.55 ± 15.0 0.263 heard

7 18 0 0.00 0.0 0.064 heed

8 18 5.56 ±5.4 0.122 hud

9 16 3 18.75 ±9.8 0.150 who'd

10 14 7 50.00 ± 13.4 0.259 hood

Overall 166 34 20.48 ± 3.1 0.175

258 THE LINCOLN LABORATORY JOURNAL VOLUM E 6, NUMBER 2, 1993

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

each class. In our vowel-classification experiment,
the labels were the 10 words used to produce the
10 vowels.

The results of our vowel-classification experiment
are shown in Table 4. Note that the overall error rate
on the evaluation data was 20.48%, there were ap­
proximately equal numbers of patterns for each class,
and rhe classes that caused the most confusions were
"heard," "hood," and "had." These results were near
the best that can be obtained with this database. The
error rate was high (roughly 20%) because we used
only two input features , thus ignoring the dynamics
of speech production. We also did not consider the
gender and age of the talkers.

By checking the appropriate boxes in the LNKnet
"Plotting Controls" window, we specified the draw­
ing of three plots. Figure 8 shows the resulting three
overlaid 2-D plots: a decision-region plot (the solid
colored regions), a scatter plot of the evaluation data
(the small white-rimmed squares), and an internals
plot (the black lines). The decision-region plot indi­
cates the classification decision formed by the MLP
classifier for any input feature vector in the plot area.
For example, input feature vectors in the upper right
yellow region are classified as the vowel in "had." It
should be noted that the values of these features were
normalized wirh simple normalization across all classes.
The scatter plot shows the evaluation data, color coded
to show the different classes. Thus classification errors
are indicated by squares whose colors do not match
the background color of the decision-region plot. The
internals plot shows how internal computing elements
in each classifier form decision-region boundaries.
For the MLP classifier, LNKnet draws lines represent­
ing hyperplanes defined by nodes in the first hidden
layer [6]. (Wirh Gaussian, Gaussian-mixture, and RBF
classifiers, LNKnet draws ovals showing the centers
and variances of the Gaussian functions used in the
classifiers.) These hyperplane lines for the MLP classi­
fier demonstrate how decision-region borders are
formed and often help determine the minimum
number of hidden nodes that are required. For ex­
periments involving more than two input features, we
can create 2-D plots by selecting any two input fea­
tures of interest and setting the other inputs to fixed
values.

During the vowel-classification experiment,
LNKnet also produced profile and histogram plots.
Figure 9(a) is a profile of the 10 classifier outputs
shown with different colors for the case in which the
second input feature x2 is set to 0.0 and the first
feature xi is swept from -2.0 to 4.0. This case corre­
sponds to a plot of the network outputs over a hori­
zontal line (x2 = 0.0) that bisects Figure 8. In Figure
9(a) the sum of all of the 10 outputs is shown in
black. This sum will be close to 1.0 for a well-trained
classifier that estimates Bayesian posterior class prob­
abilities accurately. A 1-D decision-region plot is pro­
vided at the bottom of Figure 9(a) to indicate which
class is chosen as the first input feature xi is swept
over the plotted range. Gray vertical lines, drawn
wherever there is a change in the choice of class,
indicate the decision-region boundaries. Figure 9(b)
is a histogram in which the colored squares above the
horizontal axis represent patterns that the current
model has classified correctly. The squares below indi­
cate misclassified patterns. The squares are color coded
by class and only those patterns in the evaluation
dataset which are within a prespecified distance of the
X2 = 0.0 line in Figure 8 are included in this histo­
gram. Figures 9(a) and 9(b) show the shapes of the
discriminant functions formed by the classifier out­
puts; the plots help users to infer the input ranges
over which these functions may be used reliably to
estimate posterior probabilities and likelihoods.

Figure 10, the final plot produced during the vowel­
classification experiment, shows how the rms error
between the desired and actual network outputs de­
creases during training. In the experiment, 338 unique
patterns were presented to LNKnet in random order
during each training pass. There were 1 00 passes
through the training data; thus a total of 33,800
training trials were performed, and the rms error was
plotted once for each pass. (Note: T his training rook
less than 30 sec on a Sun Spare 10 workstation.) As
can be seen in Figure 10, the rms error dropped from
above 0.3 to below 0.2 with most of the reduction
occurring early in training. Plots such as Figure 10 are
useful to determine whether gradient descent training
has converged and to study how changes in step size
and other training parameters affect the error
convergence.

VOLUME 6, NUMB ER 2, 1993 THE LINCOLN LABORATORY JOURNAL 259

Legend

Head

Hid

Hod

Had

Hawed

Heard

Heed

Hud

Who'd

Hood

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, m1d Statistical Software for Pattern Classification

2.0

1.6
~
(.)

c
1.2 Q)

~

0"

~ 0.8 --c
«l

§ 0.4
0 --o 0.0 c
0
(.)
Q)

-0.4 CJ)

-o
Q)
N

«l
-0.8

§
0 - 1.2 c

"" ><
- 1.6

- 2.0
- 1 .8 - 1 .2 -0.6 0.0 0.6 1 .2 1.8 2.4 3.0 3.6

x1 (normalized f irst formant frequency)

Decision reg ion for class
" had"

Correct classification of
" had" pattern

Incorrect classification of
"had" pattern

Hyperplane formed by a
hidden node

FIGURE 8. Overlaid 2-0 decision region , scatter, and internals plots for the vowel-classificat ion experiment.

Legend

Head :;
0..

Hid -::l
0

Hod ~
0

Had
~
Q)
z

Hawed

Heard

Heed CJ) -c
::l

Hud - 0
(.) (.)

~ E
Who'd 0 ~

u Ol

Hood 0 -CJ)

..c

II Total

1.6

1.2

0.8

0.4

0.0

(b)

0

-1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 2.4 3.0

x1 (normal ized f irst formant frequency)

3.6

Sum of all network outputs

Output for " hud"

The classification decision
is " hud"

" Had" patterns incorrectly
classified as "hud"

FIGURE 9. Vowel-classification experiment of Figure 8: (a) profile and (b) histogram for the case in which the second input
feature x2 is set to 0.0 and the first input feature x1 is swept from -2.0 to 4.0.

260 THE LINCOLN LABORATORY JOURNAL VOLUME 6. NUMBER 2. 1993

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

Three LNKnet Applications

Lincoln Laboratory, the FBI, Rome Laboratory, the
Air Force Institute ofTechnology (AFIT), and other
research laboratories have used LNKnet software for
many diverse applications. This section summarizes
three such applications at Lincoln Laboratory. First,
we describe a hybrid neural-network/hidden-Markov­
model isolated-word recognizer that uses LNKnet
REF-classifier subroutines. Next, we describe experi­
ments in which secondary testing with LNKnet MLP
classifiers improved the wordspotting accuracy of a
hidden-Markov-model wordspotter. Finally, we de­
scribe a software program that rapidly learns to repli­
cate human game-playing strategy by using LNKnet
MLP subroutines. In addition to these three examples,
LNKnet software has facilitated the development of
new pattern-classification algorithms, including the
boundary hunting RBF classifier described in Refer­
ence 24.

Isolated- Word Recognition Using a Hybrid
Neural-Network/Hidden-Markov-Model System

Many researchers are using neural networks to esti­
mate the local per-frame probabilities that are re­
quired in hidden-Markov-model (HMM) speech
recognizers [25, 26]. Previously, these probabilities
were estimated through the use of non-discriminant
training with Gaussian and Gaussian-mixture proba­
bilistic models. The understanding that network our­
puts are posterior probabilities allows the networks to
be integrated tightly with HMM and other statistical
approaches. Figure 11 shows a hybrid neural-network/
HMM speech recognizer that combines radial basis
function (RBF) neural networks and HMMs for the
speech recognition of isolated words [26, 27]. We
have developed this system by integrating LNKnet
REF-classifier subroutines with HMM software. The
RBF networks in the system produce posterior prob­
abilities representing the probability that a specific
subword acoustic speech unit occurred, given input
features from a 10-msec input speech frame.

By dividing the network outputs by the class prior
probabilities, the system normalizes the outputs to be
scaled likelihoods. (Note: The prior probabilities are
the estimated frequency of occurrence of each speech

0.35

0.30

....
g
Q) 0.25
(J)

§

0.20

0.15
0 10,000 20,000 30,000

Trials

FIGURE 10. Plot of rms error during training for the vowel­
classification experiment of Figure 8.

sound.) The scaled likelihoods can then be fed to
Viterbi decoders [28] that perform nonlinear rime
alignment to compensate for varying talking rates and
differences in word pronunciation. The Virerbi de­
coders align the input frames with the class labels of
subword speech units and specify the correct labels
for all frames. One Virerbi decoder for each keyword
to be detected produces an accumulated output score
for every keyword ar the end of each input utterance.

We rested the hybrid recognizer on a difficult talker-

Keyword1 score t

Speech
input

Keyword2 score t
Viterbi
decoders

Radial
basis
function
(RBF)
classifier

FIGURE 11 . A hybrid isolated-word recognizer that uses
radial basis function (RBF) networks to generate posterior
probabilities for statistical Viterbi decoders [28]. In this
example, there are three states (the beginning , middle, and
end) for the keyword in each decoder.

VOLUME 6, NUMBER 2. 1993 THE LINCOLN LABORATORY JOURNAL 261

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

1.0

a;
..0 0.8
~
.....
u

~
0
u 0.6 -0
>-u

± 2a bounds
c:
Q)
:::J

~ 0.4 -Q)
>
~
a; 0.2
0:::

0.0
0.0 0.2 0.4 0.6 0.8 1.0

RBF network output (all nodes)

FIGURE 12. Comparison of RBF network outputs to poste­
rior probabilities.

independent recognition task in which the goal was
to distinguish between the nine spoken letters of the
alphabet containing the long vowel "e" (i.e., the let­
ters b, c, d, e, g, p, t, v, and z) . For this task, the system
achieved error rates that were lower than those ob­
tained by a state-of-the-art high-performance Gaussian
tied-mixture recognizer with an equal number of train­
able parameters [26, 27].

The good performance achieved by this and other
hybrid recognizers suggests that the network outputs
do closely approximate posterior probabilities. We
evaluated the accuracy of posterior-probability esti­
mation by examining the relationship between the
network output for a given input speech frame and
the probability of classifying that frame correctly. If
network outputs do represent posterior probabilities,
then a specific network output value (between 0.0
and 1.0) should reflect the relative frequency of oc­
currence of correct classifications of frames that pro­
duced that output value. Furthermore, if posterior­
probability estimation is exact, then the relative
frequency of occurrence of correct classifications should
match the network output value exactly.

Because there was only a finite quantity of data, we
partitioned the network outputs into 100 equal-sized
bins between 0.0 and 1.0. The values of RBF outputs

262 THE LINCOLN LABORATORY JOURNAL VOLUME 6. NUMBER 2, 1993

were then used to select bins whose counts were
incremented for each speech frame. In addition, the
single correct-class bin count for the one bin that
corresponded to the class of the input pattern was
incremented for each frame. We then computed the
ratio of the correct-class count to the total count and
compared that ratio to the value of the bin center. For
example, our data indicated that for the 61,466 frames
of the speech utterances that were used for training,
outputs of the RBF networks in the range from 0.095
to 0.105 occurred 29,698 times, of which 3067 in­
stances were correct classifications. Thus the relative
frequency of correct labeling for this particular bin
was 0.103, which was close to 0.10, the bin center.

A plot of the relative frequencies of correct labeling
for each bin versus the bin centers gives a measure of
the accuracy of posterior-probability estimation by
the RBF neural networks. Figure 12 shows the mea­
sured relative frequency of correct labeling for the
RBF networks and the 2a bounds for the binomial
standard deviation of each relative frequency. Note
that the relative frequencies tend to be clustered around
the diagonal and many are within the 2a bounds.
This result suggests that network outputs are closely
related to the desired posterior probabilities.

Secondary Testingfor Wordspotting

In secondary testing, a neural network is used to

correct the more frequent confusions made by a sim­
pler, more conventional classifier or expert system.
Secondary testing can provide improved performance
if (1) the confusions are limited to a small number of
input classes, (2) there is sufficient training data for
these classes, and (3) the input features provide infor­
mation useful in discriminating between these classes.
One application for secondary testing is in word­
spotting.

Recent research at Lincoln Laboratory, Bell Labo­
ratories, and other speech research sites [28-30] has
begun to focus on the use of words potters to handle
unconstrained verbal interactions between humans
and machines. Wordspotters do not try to recognize
every input, but instead they try to determine when
certain keywords or phrases occur. Thus extraneous
noise and words that do not change the meaning
of the verbal input can be ignored and an open micro-

t

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

phone (i.e., a microphone that is left on continu­
ously) can be used. Potential commercial applica­
tions of wordspotting include the sorting and
selecting of voice mail by talker and topic, the voice
control of consumer products, the use of voice­
activated call buzzers for hospital patients to sum­
mon nurses, and the replacement of telephone
operators for simple functions.

We have applied secondary testing to the output
of a state-of-the-art talker-independent HMM word­
spotter developed at Lincoln Laboratory [28, 31].
Our experiments used the Road Rally speech database
containing telephone conversations berween talkers
performing a navigational task with road maps. To
create a training dataset, we ran the HMM words potter
on the Road Rally conversations and extracted speech
segments that corresponded to putative hits for the
following 20 keywords: Boonsboro, Chester, Conway,
interstate, look, Middleton, minus, mountain, pri­
mary, retrace, road, secondary, Sheffield, Springfield,
thicket, track, want, Waterloo, Westchester, and back­
track. The putative hits represented speech frames
where the 20 keywords might have occurred. Features
derived from the average cepstra at the beginning,

~

Keywords r----.
with
high

false-alarm
rates

~

Putative
Speech HMM hits

word spotter

middle, and end of each putative hit were then ex­
tracted to create training patterns for LNKnet. (Note:
Cepstra are found by taking the fast Fourier trans­
form [FFT] of the windowed input speech, followed
by taking the smoothed log magnitude of the FFT,
and then by taking the inverse FFT of the resulting
quantity.) Next, we used LNKnet neural nerworks for
the further classification of the putative hits as valid
putative hits or false alarms, as shown in Figure 13.
In this approach, one neural nerwork classifier was
trained to discriminate berween correct hits and false
alarms for each word that generated an excessive num­
ber of false alarms. Putative hits from words that
generated few false alarms were passed on without
processmg.

We performed all experiments with the LNKnet
point-and-click interface. For the classifier develop­
ment with LNKnet, cross-validation testing was cho­
sen because there were so few training patterns for
most keywords. Using N-fold cross-validation testing,
LNKnet split the training data into N equal-sized
folds and performed N experiments, each time train­
ing with N- 1 folds and testing with the remaining
fold. LNKnet performed both the splitting of the

Neural
network
(word 1)

Neural
network
(word 2)

•
•
•

Neural
network
(word n)

Hit
I--
False alarm

Hit
I--
False alarm

Hit
I--
False alarm r

?
Final

putative
hits

Keywords with low false-alarm rates

FIGURE 13. Secondary testing for wordspotting. The neural networks are used to distinguish between the valid putative hits
and fa lse alarms that the hidden-Markov-model (HMM) word spotter has detected.

VOLUME 6. NUMB ER 2. 1993 THE LINCOLN LABORHORY JOURNAL 263

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

80

75

u
~
0 70
u
.....
c
~ 65
Q)

c..

60

55
2

HMM word spotter with
secondary testing

Basel ine HMM wordspotter

4 6 8 10 12

False alarms per keyword per hour

14

FIGURE 14. W ordspotting detection accuracy versus num­
ber of false alarms per keyword per hour generated with
and without neural network secondary testing.

data and the cross-validation testing automatically.
The average error rate that occurred during the test­
ing of the N remainder folds was a good estimate of
the generalization error on unseen data. The experi­
ments suggested that multilayer perceptrons trained
with back-propagation and with one hidden layer
provided the best performance with the limited num­
bers of putative hits available for training. Further­
more, the average cepstra extracted from the begin­
ning and end of each putative hit were found to
provide good discrimination.

We performed further secondary-testing experi­
ments with the same database and keywords as part of
a Defense Advanced Research Projects Agency

A is better

ROWS HOLES HEIGHT JAGS

Input features for posit ion A

(DARPA) workshop on speech evaluation held in
Washington, D .C., on 10 and 11 March 1992. Refer­
ence 31 contains derails of this evaluation and Figure
14 summarizes the results. The blue curve in the
figure shows the detection accuracy of the primary
HMM wordspotter as a function of the number of
false alarms per keyword per hour. Note that the
detection accuracy increases as we allow the number
of false alarms to increase. The red curve in the figure
shows the increase in detection accuracy achieved
with neural networks used for secondary resting. One
network for each of the four words that produced
many false alarms was used to reclassifY putative hits
produced by the primary wordspotter. Overall, this
postprocessing reduced the false-alarm rate by an
average of 16.4%, thus demonstrating that neural
networks can be used effectively as wordspotter
postprocessors. Further analyses showed that the extra
computational overhead required by secondary rest­
ing was much less than 5%.

Learning a Game-Playing Strategy
from a Human Player

Neural network classifiers can learn to reproduce the
responses of human experts to new situations in tasks
as diverse as driving a van [32] and playing backgam­
mon [33]. An example of this type of learning is
netris, a program that we created using LNKner MLP­
classifier subroutines. Netris learns the strategy that a
human uses to play a modified version of Tetris, a
popular computer game.

B is better

ROWS HOLES HEIGHT JAGS

Input features for position B

FIGURE 15. Neural network used to learn a human player's preferences for positioning
pieces in the computer game Tetris.

264 THE liNCOLN LABORATORY JOURNAL VOLUME 6. NUMBER 2. 1993

!

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

In Tetris, different-shaped pieces appear one by one
at the top of a rectangular playing grid and fall to­
wards the bottom of the grid. A player must rotate (in
90° increments) and move (either left or right) each
piece such that the pieces form complete solid rows
across the bottom of the grid. The solid rows disap­
pear, making room for more pieces, and points are
awarded for each solid row. If the player is unable to
complete solid rows across the bottom of the grid, the
playing field will begin to fill up. The game ends
when gridlock occurs at the top of the playing field
and no new pieces have any room to fall. (Note:
Readers who are unfamiliar with Tetris may look ahead
to Figure 16, which contains two examples of play­
ing fields.)

The netris program allows a human to play Tetris
while simultaneously training a neural network to
play in an adjacent screen. The network is trained
with LNKnet subroutines to try to mimic the human
player's decisions. During the training process, the
move selected by the human for each falling piece is
paired with all other permissible moves, thus creating
multiple training patterns. A preference network trained
with these patterns can then be used to select moves
for new pieces in a different playing grid. The prefer­
ence network finds the best move by comparing pairs
of all permissible moves, always retaining the move
that is judged better. This process requires only N
comparisons (given N possible moves) because the
rejected move is dropped after each comparison and
only the winning move is kept for comparison with
the remaining moves. T he network trains rapidly (en­
abling real-time learning) and reproduces a human
player's decisions accurately. If the human makes con­
sistently good moves, the network will gradually learn
to play better and better.

Initial experiments led to the simple position-pref­
erence network shown in Figure 15. The network has
eight linear input nodes, two sigmoid output nodes,
and 18 weights (including two bias weights not
shown). For the input features to the network, a
human player has selected certain important charac­
teristics of the piece distribution at the bottom of the
Tetris playing field. T he input features selected are the
number of rows completed by the falling piece
(ROWS), the number of holes created below the piece

0 rows completed
6 pieces dropped

(a)

18 rows completed
50 pieces d rapped

J

(b)

FIGURE 16. Configuration of pieces by preference network
with (a) no training and (b) after training on 50 pieces that
were positioned by a human player in the popular com­
puter game Tetris.

(HOLES), the maximum height of the piece
(HEIGHT), and the variability in the contour formed
by the tops of all pieces QAGS) . These four input
features are provided for the two permissible and
unique moves (A and B) that are being compared,
and the network determines whether A or B is pre­
ferred by selecting the move corresponding to the
output node with the highest value.

Figure 16(a) shows an example of how pieces pile
on top of one another without forming rows when
the preference network has not been trained. Without
such training, gridlock occurs in the playing field
after about 9 to 13 pieces have fallen. Figure 16(b)
shows how the pieces fall more purposefully after the
network has been trained with only 50 decisions made
by an unskilled human player. With such training, 18
rows have been completed after 50 pieces have fallen,
and the strategy used by the human player is being
imitated by the preference network.

VOLUME 6, NUMBER 2, 1993 THE LINCOLN LABORATORY JOURNAL 265

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

Summary

A software package named LNKnet simplifies the
task of applying neural network, statistical, and ma­
chine-learning pattern-classification algorithms in new
application areas. LNKnet classifiers can be trained
and tested on separate data or tested with automatic
cross-validation. The point-and-dick interface of the
software package enables non-programmers to per­
form complex pattern-classification experiments, and
structured subroutine libraries allow classifiers to be
embedded in user application programs. LNKnet has
been used successfully in many research projects, in­
cluding the development of a hybrid neural-network/
hidden-Markov-model isolated-word recognizer, the
improvement of wordspotting performance with sec­
ondary testing, and the learning of a human's game­
playing strategies. LNKnet software has also been
applied in other diverse areas, including talker identi­
fication, talker-gender classification, hand-printed­
character recognition, underwater and environmental
sound classification, image spotting, seismic-signal
classification, medical diagnosis, galaxy classification,
and fault detection.

LNKnet is currently available through the MIT
Technology Licensing Office.

Acknowledgments

The authors are grateful to Dave Nation, who was
one of the first programmers of LNKnet software.
Other people who contributed to the development of
LNKnet and to the experiments and systems described
in this article include Deniz Akyuz, Eric Chang,
Charles Jankowski, Doug Reynolds, and Rick Rose.
T he development of LNKnet was supported by a
number of government agencies. Sponsors who helped
guide and shape the direction of this work include
Jim Cupples, Laurie Fenstermacher, John Hoyt, Bar­
bara Yoon, Tod Luginbuhl, and Roy Streit.

T his work was sponsored by the U.S. Air Force
and the Department of Defense.

266 THE LINCOLN LABORATORY JOURNAL VOLU ME 6. NUMBER 2. 1993

REFERENCES

1. M.D. Richard and R.P. Lippmann, "Neural Nerwork Classifi­
ers Estimate Bayesian a Posteriori Probabilities," Neural Com­
putation3,461, 1992.

2. R.O. Duda and P.E. H art, Pattern Classification and Scene
Anarysis Qohn W iley, New York, 1973).

3. K. Fukunaga, Introduction to Statistical Pattern Recognition
(Academic Press, New York, 1972).

4 .]. Hertz, A. Krogh, and R.G. Palmer, Introduction to the
Theory of Neural Computation (Addison-Wesley, Reading,
MA, 1991).

5. D.R. Hush and B.G. Horne, "Progress in Supervised Neural
Nerworks," IEEE Signal Process. Mag. 10, 8 Qan. 1993).

6. R.P. Lippmann, "An Imroduction to Computing with Neural
Nets," in Neural Networks: Theoretical Foundations andAnary­
sis, ed. C. Lau (IEEE Press, New York, 1992).

7. R.P. Lippmann, "A Critical Overview of Neural Nerwork
Pattern Classifiers," in Neural Networks for Signal Processing,
Proc. of the 1991IEEE Workshop, Piscataway, Nj, 1991, eds.
B. H. Juang, S.Y. Kung, and C.A. Kamm, p. 266.

8. B.G. Batchelor, ed., Pattern Recognition: Ideas in Practice (Ple­
num Press, New York, 1978).

9. J.B. Hampshire II and B.V.K. Vijaya Kumar, "Why Error
Measures are Sub-Optimal for Training Neural Nerwork Pat­
tern Classifiers," in IEEE Proc. 1992 Int. joint Conf on Neural
Networks, Baltimore, 7-11 June 1992, p. IV-220.

10.].B. Hampshire II and A.H. Waibel, "A Novel Objective
Function for Improved Phoneme Recognir.ion Using Time­
Delay Neural Nerworks," in IEEE Trans. NeuralNetw. 1, 216
(1990).

11. N.J. N ilsson, Learning Machines (McGraw-H ill, New York,
1965).

12. J.A. Hartigan, Clustering Algorithms Qohn Wiley, New York,
1975).

13. W.Y. Huang and R.P. Lippmann, "Comparisons berween
Neural Net and Convemional C lassifiers," in Proc. 1st Int.
Conf on Neural Networks, San Diego, 21- 24june 1987, p. IV-
485.

14. LN. Kukolich and R.P. Lippmann, "LNKnet User's Guide,"
MIT Lincoln Laboratory Technical Report in press, 1993.

15. Y.C. Lee, Classifiers: Adaptive Modules in Pattern Recognition
Systems, S.M. T hesis, MIT, Dept. of Electrical Engineering
and Computer Science, Cambridge, MA (1989).

16. Y.C. Lee and R.P. Lippmann, "Practical Characteristics of
Neural Nerwork and Conventional Pattern C lassifiers on Arti­
ficial and Speech Problems," in Advances in Neural Informa­
tion Processing Systems 2, ed. D .S. Tourerzky (Morgan Kauf­
mann, San Mateo, CA, 1990).

17 . R.P. Lippmann, "Pattern Classification Using Neural Net­
works," in IEEE Commun. Mag. 27, 47 (Nov. 1989).

18. K. Ng and R.P. Lippmann, "A Comparative Study of the
Practical Characteristics of Neural Nerwork and Convention­
al Pattern Classifiers," Technical Report 894, MIT Lincoln
Laboratory (19 Mar. 199 1).

r

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: Neural Network, Machine-Learning, and Statistical Software for Pattern Classification

19. K. Ng and R.P. Lippmann, "A Comparative Study of the
Practical Characteristics of Neural Network and Conventional
Pattern Classifiers," in Neural Information Processing Systems 3,
eds. R. Lippmann, J. Moody, and D. Touretzky (Morgan
Kaufmann, San Mateo, CA, 1991), pp. 970- 976.

20. I. Guyon, I. Poujand, L. Personnaz, G. Dreyfus,]. Denker,
andY. Le Cun, "Comparing Different Neural N etwork Archi­
tectures for ClassifYing Handwritten Digits," Proc. Int. joint
Conf on Neural Networks, Washington, DC, 1989, p. II.1 27.

21. S.M. Weiss and C.A. Kulikowski, Computer Systems That
Learn: Classification and Prediction Methods from Statistics, Neu­
ral Nets, Machine Learning, and Expert Systems (Morgan Kauf­
mann, San Mateo, CA, 1991).

22. T.W. Parsons, Voice andSpeech Processing(McGraw-Hill, New
York, 1986).

23. G.E. Peterson and H.L. Barney, "Control Methods Used in a
Study ofVowels," in] Acoust. Soc. Am. 24, 175 (1952).

24. E. I. Chang and R.P. Lippmann, "A Boundary Hunting Radial
Basis Function Classifier Which Allocates Centers Construc­
tively," in Neural Information Processing Systems 5, eds. S.
Hanson, J. Cowan, and C. Giles (Morgan Kaufmann, San
Mateo, CA, 1993), pp. 139-146.

25 . N . Morgan and H. Bourlard, "Continuous Speech Recogni­
tion Using Multilayer Perceprrons with Hidden Markov Mod­
els," in Proc. Int. Conf on Acoustics, Speech and Signal Process­
ing, Albuquerque, NM, 3-6Apr. 1990, p. I-4 13.

26. E. Singer and R.P. Lippmann, "Improved Hidden Markov
Model Speech Recognition Using Radial Basis Function Net­
works," in Neural Information Processing Systems 4, eds. J.
Moody, S. Hanson, and R. Lippmann (Morgan Kaufmann,
San Mateo, CA, 1992), pp. 159- 166.

27. E. Singer and R.P. Lippmann, "A Speech Recognizer Using
Radial Basis Function Neural Networks in an HMM Frame­
work," in Proc. Int. Conf on Acoustics, Speech and Signal Pro­
cessing, San Francisco, 23-26 Mar. 1992, p. I-629.

28. R.C. Rose, "Techniques for Information Retrieval from Speech
Messages," Line. Lab.] 4, 45 (1991).

29. J.R. Rohlicek, W. Russell, S. Roukos, and H. Gish, "Continu­
ous Hidden Markov Model for Speaker Independent Word
Sporting," in Proc. Int. Conf on Acoustics, Speech and Signal
Processing, Glasgow, 23-26May 1989, p. I-627.

30. J.G. Wilpon, L.R. Rabiner, C.-H. Lee, and E.R. Goldman,
"Automatic Recognition of Keywords in Unconstrained Speech
Using Hidden Markov Models," in IEEE Trans. Acoust. Speech
Signa/ Process. 38, 1870 (1990).

31. R.P. Lippmann and E. Singer, "Hybrid Neural-Network!
HMM Approaches to Wordsporting," in Proc. Int. Conf on
Acoustics, Speech and Signal Processing, Minneapolis, MN, 27-
30Apr. 1993, p. 1-565.

32. D. Pomerleau, "Rapirlly Adapting Artificial Neural Networks
for Autonomous Navigation," in Neural Information Processing
Systems 3, eds. R. Lippmann, J. Moody, and D. Tourerzky
(Morgan Kaufmann, San Mateo, CA, 199 1), pp. 429-435.

33. G. Tesauro, "Practical Issues in Temporal Difference Learn­
ing," in Neural Information Processing Systems 4, eds. J. Moody,
S. Hanson, and R. Lippmann (Morgan Kaufmann, San Ma­
teo, CA, 1992).

VOLUME 6, NUMBER 2, 1993 THE LINCOLN LABORATORY JOURNAL 267

• LIPPMANN, KUKOLICH, AND SINGER
LNKnet: NeuraL Network, Machine-Learning, and StatisticaL Software for Pattern CLassification

RICHARD P. LIPPMANN

was born in Mineola, New
York, in 1948. He received a
B.S. degree in electrical engi­
neering from the Polytechnic
lnsrirure of Brooklyn in 1970,
and an S.M. and a Ph.D.
degree in elecuical engineering
from MIT in 1973 and 1978,
respectively. His S.M. thesis
dealt with the psychoacoustics
of imensiry perception, and his
Ph.D. thesis with signal pro­
cessing for the hearing im­
paired.

From 1978 ro 198 1, he was
the Direcror of the Communi­
cation Engineering Laborarory
ar the Boys Town Institute for
Communication Disorders in
Children in Omaha, Nebraska.
He worked on speech recogni­
tion, speech rraining aids for
deaf children, sound alerting
aids for the deaf, and signal
processing for hearing aids. In
198 1, he joined Lincoln Labo­
rarory and is currencly a senior
staff member in the Speech
Systems Technology G roup,
where his focus of research has
been in speech recognition,
speech I/0 systems, and rour­
ing and sysrem comrol of
circuir-swirched nerworks. His
currem imerests include speech
recognition, neural nerwork
algorithms, srarisrics, and
human physiology, memory,
and learning. Rich is a found­
ing member of rhe Neural
Information Processing Sys­
tems (NIPS) Foundation,
which has sponsored the an­
nual N IPS conference in
Denver, Colorado, since 1988.

LINDA C. KUKOLICH

is an assisran r staff member in
the Speech Systems Technology
Group, where her focus of
research has been in algorithm
and user-inrerface developmenr
for parrern classification, espe­
cially in the field of speech
recognition. She received a B.S.
degree in applied mathemarics
from MIT.

268 THE LINCOLN LABORATORY JOURNAL VOLUME 6, NUMBER 2. 1993

ELLIOT SINGER

received a B.S. degree in electri­
cal engineering from Polytech­
nic Universiry in 197 1 and an
S.M. degree in elecrrical engi­
neering from MIT in 1974. He
is a staff member in the Speech
Systems Technology Group,
where his focus of research has
been in speech recognition and
wordsporring. From 1975 ro
1977, he was an instrucror for
the Deparrmenr ofElecrrical
Engineering and Computer
Science ar MIT. He is a mem­
ber ofTau Bera Pi and Era
Kappa Nu.

. \
. ..-

{

